25 research outputs found

    The Emergency Landing Planner Experiment

    Get PDF
    In previous work, we described an Emergency Landing Planner (ELP) designed to assist pilots in choosing the best emergency landing site when damage or failures occur in an aircraft. In this paper, we briefly describe the system, but focus on the integration of this system into the cockpit of a 6 DOF full-motion simulator and a study designed to evaluate the ELP. We discuss the results of this study, the lessons learned, and some of the issues involved in advancing this work further

    Towards improved understanding of cascading and interconnected risks from concurrent weather extremes: Analysis of historical heat and drought extreme events

    Full text link
    Weather extremes can affect many different assets, sectors and systems of the human environment, including human security, health and well-being. Weather extremes that compound, such as heat and drought, and their interconnected risks are complex, difficult to understand and thus a challenge for risk analysis and management, because (in intertwined systems) impacts can propagate through multiple sectors. In a warming climate, extreme concurrent heat and drought events are expected to increase in frequency, intensity and duration, posing growing risks to societies. To gain a better understanding of compound extremes and associated risks, we analyze eight historical heat and drought extreme events in Europe, Africa and Australia. We investigated and visualized the direct and indirect impact paths through different sectors and systems together with the impacts of response and adaptation measures. We found the most important cascading processes and interlinkages centered around the health, energy and agriculture and food production sectors. The key cascades result in impacts on the economy, the state and public services and ultimately also on society and culture. Our analysis shows that cascading impacts can propagate through numerous sectors with far reaching consequences, potentially being able to destabilize entire socio-economic systems. We emphasize that the future challenge in research on and adaptation to concurrent extreme events lies in the integration of assets, sectors and systems with strong interlinkages to other sectors and with a large potential for cascading impacts, but for which we cannot resort to historical experiences. Integrating approaches to deal with concurrent extreme events should furthermore consider the effects of possible response and adaptation mechanisms to increase system resilience

    Future trends in compound concurrent heat extremes in Swiss cities - An assessment considering deep uncertainty and climate adaptation options

    Full text link
    The interaction of multiple hazards across various spatial and temporal scales typically causes compound climate and extreme weather events. Compound concurrent hot day and night (CCHDNs) extremes that combine daytime and nighttime heat are of greater concern for health than individual hot days (HDs) or hot nights (HNs), even though their frequency is lower. We utilize a bottom-up exploratory approach to investigate how adaptation options and various unfolding future scenarios alleviate the impacts of the heatwaves and affect the frequency and intensity of CCHDNs. We use climate observations (1981–2020) and Switzerland's future climate model scenarios (CH2018) to analyze historical and future trends of the individual hot day followed by a hot night (HDNs, first metric), and the length and frequency of CCHDNs (second and third metrics) in the near-future (2020–2050) and far-future (2070–2100). Results show more frequent and lengthier HDNs in cities under all emission scenarios, notably significant under high emissions scenarios. The highest increase of HDNs occur in i) Lugano with 65.8 days (decade−1) in the historical period and 110 (371) days (decade−1) in near-future (far-future), ii) Geneva with historical 48 days (decade−1) to 108 (362) (decade−1), iii) Basel with 48–74 (217) days in the future, followed by iv) Bern with 15–44 (213) days and v) Zürich with 14–50 (217) days (decade−1) in the near-future and far-future, respectively. We consistently project that the CCHDNs in April–October become more likely and intense in all cities under all emission scenarios, with higher increases under the RCP8.5 scenario and after the 2050s. The frequency of compound extreme heatwaves (exceeding both historical thresholds of night and day temperatures) may increase by 3.5–7.8-fold and become 3.3–5.3-fold lengthier in all cities of Switzerland in the far-future. We find that the adaptation options targeting higher tolerance to increased minimum temperatures contribute more to reducing compound extreme events' frequency and intensity than adaptation options that address the maximum daily temperature

    Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document

    Get PDF
    This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations

    Mission Simulation Toolkit

    Get PDF
    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space

    The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents: the freezing level in the tropical Andes

    Get PDF
    Along with air temperatures, the freezing level height (FLH) has risen over the last decades. The mass balance of tropical glaciers in Peru is highly sensitive to a rise in the FLH, mainly due to a decrease in accumulation and increase of energy for ablation caused by reduced albedo. Knowledge of future changes in the FLH is thus crucial to estimating changes in glacier extents. Since in situ data are scarce at altitudes where glaciers exist (above ~4800 m above sea level (asl)), reliable FLH estimates must be derived from multiple data types. Here we assessed the FLHs and their spatiotemporal variability, as well as the related snow/rain transition in the two largest glacier-covered regions in Peru by combining data from two climate reanalysis products, Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Bright Band data, Micro Rain Radar data, and meteorological ground station measurements. The mean annual FLH lies at 4900 and 5010 m asl, for the Cordillera Blanca and Vilcanota, respectively. During the wet season, the FLH in the Cordillera Vilcanota lies ~150 m higher compared to the Cordillera Blanca, which is in line with the higher glacier terminus elevations. Coupled Model Intercomparison Project version 5 (CMIP5) climate model projections reveal that by the end of the 21st century, the FLH will rise by 230 m (±190 m) for Representative Concentration Pathway (RCP) 2.6 and 850 m (±390 m) for RCP8.5. Even under the most optimistic scenario, glaciers may continue shrinking considerably, assuming a close relation between FLH and glacier extents. Under the most pessimistic scenario, glaciers may only remain at the highest summits above approximately 5800 m asl

    Relevance of future snowfall level height in the Peruvian Andes for glacier loss in the 21st century under different emission scenarios

    Get PDF
    In many regions of Peru, the competition for limited hydrological resources already represents a large risk for conflicts. In this context, and within the circumstances of climate change, there is a great interest in estimating the future loss of Peruvian glaciers. Solid precipitation on glaciers, which affects the shortwave radiation budget via its effects on albedo, in general reduces ablation. For that reason, the height of the upper level of the transition zone between liquid and solid precipitation (snowfall level height) is considered to play a critical role. This snowfall level height is linked to air temperature. The observed and projected warming of the atmosphere is therefore affecting the glaciers amongst others by changing the snowfall level height. Despite the potential significance of these changes for Peruvian glaciers, the relations between snowfall level heights, glacier extents and climate scenarios have been poorly investigated so far. In our study, we first analyse the snowfall level heights over the Peruvian Cordilleras
    corecore